
Visualization of Orbital Debris with Cesium and Satellite-js 
By Daniel A. O’Neil 

Introduction 
Analytical Graphics Inc. (AGI) provides a free open source digital globe and JavaScript 

Application Programming Interface (API), named Cesium. With Cesium, a developer can create 

interactive web-based space mission visualizations. This tutorial explains how to develop a 

Cesium web-app to visualize orbital debris using the Simple General Perturbations (SGP) model 

and Two-Line Element (TLE) data. 

Prerequisites and Objectives 
A TLE encodes a list of orbital elements for Earth-orbiting objects at a given point of time 

known as an epoch. The SGP is a set of mathematical models for calculating orbital state vectors 

relative to the Earth-centered inertial coordinate system. The satellite-js code library is an orbital 

propagator that applies the SGP to TLE to generate coordinates for web-based space mission 

visualizations. The Center for Space Standards & Innovation operates a web-site, named 

Celestrak, which provides current TLE data for satellites and orbital debris. The next section of 

this tutorial explains how to convert a TLE text file to a JavaScript string variable for use by 

satellite-js SGP orbital propagator functions. Other sections explain how to reference satellite-js 

and Cesium and present code listings for visualizing and propagating orbital debris. 

https://en.wikipedia.org/wiki/Two-line_element_set 

https://en.wikipedia.org/wiki/Simplified_perturbations_models 

https://github.com/shashwatak/satellite-js 

http://www.celestrak.com/NORAD/elements/ 

Data Conversion 
Figure 1 depicts a TLE text 

file in the background and 

the same data reformatted as 

a JavaScript text string. 

Upon selection of a TLE 

data-set at Celestrak, the 

text file will appear in a 

web-page. Copy and paste 

the data into Excel. A 

simple macro can skip the 

rows and copy the data to 

another column. The 

following Visual Basic for 

Applications (VBA) code 

snippet copies the data 

without the label rows. 

 

 

 

 

 

Figure 1 A TLE text file and the same data formatted as a String 

https://en.wikipedia.org/wiki/Two-line_element_set
https://en.wikipedia.org/wiki/Simplified_perturbations_models
https://github.com/shashwatak/satellite-js
http://www.celestrak.com/NORAD/elements/


Sub SkipLabels() 

   Dim rgwithLabel As Range 

   Dim rgnoLabel As Range 

   Dim i As Integer          ' source row counter 

   Dim j As Integer          ' destination row counter 

    

   Set rgwithLabel = ThisWorkbook.Worksheets("Labeled").Range("A2") 

   Set rgnoLabel = ThisWorkbook.Worksheets("noLabel").Range("A1") 

   j = 1 

   i = 1 

   While rgwithLabel.Cells(i).Value <> "" 

      

     If i Mod 3 <> 0 Then 

       rgnoLabel.Cells(j).Value = rgwithLabel.Cells(i).Value 

       j = j + 1 

     End If 

     i = i + 1 

   Wend 

End Sub 

 

Additional reformatting includes adding quotes at the beginning and end of the lines, commas to 

separate the lines, the variable declaration, and brackets to enclose the strings. The data is saves 

as a JavaScript file, e.g., Irridium.js. Within the web page for the visualization, the file is 

included with the line, <script src="IrridiumDebris.js"></script>. 

Visualization with Cesium 
The Satellite-js code library 

implements the Simple General 

Perturbations (SGP) model. The 

Prerequisites and Objectives 

section provided links to an 

article about SGP and the 

Satellite-js GitHub project page. 

This section provides lines for 

including the Satellite-js and 

Cesium code libraries and code 

snippets for generating the 

points in Cesium and 

propagating the orbits with 

Satellite-js. Trajectories are 

propagated from TLE data 

provided by Celestrak. Figure 2 

presents a screen-shot of the 

Cesium and Satellite-js 

demonstration. The following 

link leads to the demo. 

http://daoneil.github.io/spacemission/Apps/Cesium_with_SGP.html 

 

Referencing the Code Libraries 

The previous section provided a line to include a JavaScript file that defines a variable that 

contains the TLE data. The following lines include the scripts for Cesium and Satellite-js. 

Figure 2 Screenshot of the Cesium and Satellit-js Demo 

http://daoneil.github.io/spacemission/Apps/Cesium_with_SGP.html


 
<script src="../Build/Cesium/Cesium.js"></script> 

<link rel="stylesheet" type="text/css" href="satellite-js-

master/sgp4_verification/css/app.css"> 

<script src="satellite-js-master/dist/satellite.js"></script> 

<script src="satellite-js-master/dist/satellite.min.js"></script> 

<script src="satellite-js-master/sgp4_verification/lib/angular/angular.js"> 

</script> 

 

JavaScript Code for Cesium 

The following code snippet loops through each TLE and adds a point entity to an array. A loop 

counter becomes the id for the point and an index into the array. 

 
  var thing = [] ; 

  for (debrisID = 0; debrisID < irridiumDebris.length; debrisID++) { 

    thing[debrisID] = viewer.entities.add({ 

    position : { value : Cesium.Cartesian3.fromDegrees(-75.59777, 40.03883) , 

            referenceFrame : Cesium.ReferenceFrame.FIXED }, 

    point : { 

            color : Cesium.Color.YELLOW, 

            pixelSize : 6 

        }}); 

  }// next debrisID 

 

JavaScript Code for Satellite-js 

Functions within the Satellite-js library read the TLE and create a record, propagate position 

based on advancing time, and generate Cartesian coordinates in an Earth Centered Fixed or Earth 

Centered Inertial reference frame. The following code snippet generates an array of debris 

records from the TLE data, generates an array of positions and velocities, and propagates the 

position and velocity array. 

 
// Declare orbital debris variables 

var debrisRecords = [] ; 

var datasetSize = irridiumDebris.length ; 

var posVel = [] ;             // positions and velocities of orbital debris 

 

function propagateOrbitalDebris() { 

   var j = 0 ; 

  for (i=0; i <  datasetSize; i++) { 

     var tle1 = irridiumDebris[j] ; 

     var tle2 = irridiumDebris[j + 1] ; 

 

    if (typeof tle1 == 'string' || tle1 instanceof String || typeof tle2 ==    

        'string' || tle2 instanceof String) { 

        debrisRecords[i] = satellite.twoline2satrec(tle1, tle2) ; } 

        j = j + 2 ; // advanced to the next TLE in the array } 

 

// Propagate debris using time since epoch 

   for (i=0; i <  datasetSize; i++) { 

      if (debrisRecords[i] != undefined) { posVel[i] = satellite.sgp4  

         (debrisRecords[i], timeSinceTleEpochMinutes); } 

   } 

 

 

 

 



// Propagate debris using time since epoch 

for (i=0; i <  datasetSize; i++) { 

  if (debrisRecords[i] != undefined) {  

     posVel[i] = satellite.propagate( 

       debrisRecords[i], 

       now.getUTCFullYear(), 

       now.getUTCMonth() + 1, // Note, function requires the range 1-12. 

       now.getUTCDate(), 

       now.getUTCHours(), 

       now.getUTCMinutes(), 

       now.getUTCSeconds() 

    ); 

  } //endif 

}//next i 

}//end propateOrbitalDebris 

Demonstration Source Code 
A GitHub repository, https://github.com/daoneil/spacemission, includes the files named 

Cesium_with_SGP.html and IrridiumDebris.js. The HTML file is the web-page with embedded 

JavaScript that calls functions in the Cesium and Satellit-js libraries. The JavaScript file defines 

the variable irridiumDebris, which contains the TLE data for the debris from Irridium  33. 

Conclusions 
This tutorial provided links to information about SGP, Celestrak, TLE, and Satellit-js. A data 

conversion section explained to use Excel to format the data as a JavaScript string variable and it 

include VBA code to copy the data without the headers. A visualization section provided code 

snippets for referencing the code libraries, creating the point entities that represent the data, and 

propagating positions based on time advancement. A source code section provides the link to the 

GitHub repository and identifies the source code files. Potential follow-on development efforts 

include adding additional debris data sets, changing the point entities to 3D objects, and creating 

a maneuverable spacecraft for capturing the debris objects. 

 

https://github.com/daoneil/spacemission

