
Interactive Web Visualization of an Earth to Moon Mission
By Daniel A. O’Neil

Introduction
Analytical Graphics Inc. (AGI) provides a free digital globe and open source JavaScript code

library, named Cesium. With Cesium, a developer can create interactive web-based space

mission visualizations. This tutorial explains how to convert time-stamped Cartesian coordinate

data, exported from the General Mission Analysis Tool (GMAT), into a Cesium compatible

format. Additionally, this tutorial explains JavaScript code that calls functions in the Cesium

Application Programming Interface (API) for loading models and tracking entities as they follow

a trajectory.

Prerequisites and Objectives
The demonstration developed for this tutorial uses data generated from a GMAT tutorial. Refer

to the GMAT documentation for the tutorials. In GMAT, lines can be inserted in the scripts to

write trajectory time-stamped Cartesian coordinate data into a text file. The GMAT webpage,

https://gmat.gsfc.nasa.gov/, provides links for downloading the application and a support forum.

Data Conversion
Figure 1 presents two versions of time-stamped trajectory data in Excel spreadsheets. The back

spreadsheet presents the data as it appears when exported from GMAT. The spreadsheet in the

front presents the data in a Cesium compatible format. The reformatting was done manually.

Reformatting steps included splitting the date-timestamps into separate columns, adding columns

for quotes, the T and Z, and commas. The numbers were multiplied by a thousand to convert

them from kilometers to meters. Date and time-stamps are expressed in ISO 8601format.

https://en.wikipedia.org/wiki/ISO_8601

Figure 1 Spreadsheets with time-stamped trajectory data

https://gmat.gsfc.nasa.gov/
https://en.wikipedia.org/wiki/ISO_8601

Visualization with Cesium
A Cesium based visualization of an Earth to Moon mission, depicted in Figure 2, includes

trajectories for the moon and a lunar probe, a speed-control widget, and buttons for selecting

various viewpoints. Presented in the inset image is the lunar probe. The following link leads to

the demo. http://daoneil.github.io/spacemission/Apps/EarthToMoon_Demo.html

Figure 2 A Cesium based visualization of an Earth to Moon mission

A graphics industry consortium, the Khronos Group, developed a 3D file format suited for data

transmission. Cesium supports the glTF format for 3D models. Originally, the lunar probe model

was a Lunar Reconnaissance Orbiter (LRO) model in the Light Wave Object (LWO) format.

Using the modeling application, Blender, the file was converted to the COLLADA format. A

web-app at the Cesium website converts COLLADA to glTF via a drag-and-drop area.

 NASA 3D Resources, LRO model http://nasa3d.arc.nasa.gov/detail/lro-full

 COLLADA to glTF drag-and-drop converter https://cesiumjs.org/convertmodel.html

 Information about glTF https://www.khronos.org/gltf

Cesium Modeling Language (CZML)
Cesium has a JavaScript Object Notation (JSON) based modeling language, CZML, for defining

entities, associated attributes, and coordinate data for paths. A CZML Guide provides an

overview of the characteristics and CZML content pages provide detailed documentation about

specifying entities, attributes, and behavior.

 Cesium Language (CZML) Guide

https://github.com/AnalyticalGraphicsInc/cesium/wiki/CZML-Guide

 CZML Content

https://github.com/AnalyticalGraphicsInc/cesium/wiki/CZML-Content

 CZML Content 2

https://github.com/AnalyticalGraphicsInc/cesium/wiki/CZML-Content-2

http://daoneil.github.io/spacemission/Apps/EarthToMoon_Demo.html
http://nasa3d.arc.nasa.gov/detail/lro-full
https://cesiumjs.org/convertmodel.html
https://www.khronos.org/gltf
https://github.com/AnalyticalGraphicsInc/cesium/wiki/CZML-Guide
https://github.com/AnalyticalGraphicsInc/cesium/wiki/CZML-Content
https://github.com/AnalyticalGraphicsInc/cesium/wiki/CZML-Content-2

The following CZML code snippet specifies a document and lunar probe content:
[{

 "id":"document",

 "name":"Lunar Transfer Trajectory",

 "version":"1.0",

 "clock":{

 "interval":"2014-07-22T11:00:00Z/2014-08-12T22:07:27Z",

 "currentTime":"2014-07-22T11:00:00Z",

 "multiplier":2100,

 "range":"LOOP_STOP",

 "step":"SYSTEM_CLOCK_MULTIPLIER"

 }},

{ "id": "lunarProbe",

 "availability":["2014-07-22T11:00:00Z/2014-08-12T22:07:27Z"],

 "model" : {

 "gltf" : "LRO_spacecraft_with_materials.gltf",

 "scale" : 5000.0,

 "show" : [{

 "interval" : "2014-07-22T11:00:00Z/2014-08-12T22:07:27Z",

 "boolean" : true }]

 },

 "billboard" : {

 "eyeOffset" : {

 "cartesian" : [0.0, 0.0, 0.0]

 },

 "horizontalOrigin" : "CENTER",

 "image" : "data:image/png;base64,<data not shown to save space>,

 "pixelOffset" : {

 "cartesian2" : [0.0, 0.0]},

 "scale" : 0.8,

 "show" : true,

 "verticalOrigin" : "BOTTOM" },

 "label" : {

 "fillColor" : {

 "rgba" : [255, 255, 0, 255]

 },

 "font" : "bold 10pt Segoe UI Semibold",

 "horizontalOrigin" : "LEFT",

 "outlineColor" : {

 "rgba" : [0, 0, 0, 255]

 },

 "pixelOffset" : {

 "cartesian2" : [10.0, 0.0] },

 "scale" : 1.0,

 "show" : true,

 "style" : "FILL",

 "text" : "lunarProbe",

 "verticalOrigin" : "CENTER" },

 "path" : { "width" : 1.5,

 "material":{

 "solidColor":{ "color":{ "rgba":[200,100,150,255] } }

 },

 "show" : true },

 "position": {

 "referenceFrame": "INERTIAL",

 "cartesian": [

"2014-07-22T11:29:11Z",-137380198.4340,75679878.6754,21487638.7519,

"2014-07-22T11:30:11Z",-137394120.7690,75653088.4724,21492771.5937,

"2014-07-22T11:33:21Z",-137438027.2700,75567784.4716,21509029.0206,

….] } }]

Declarations in the CZML code include identifiers, a time-frame for the availability of the

model, a billboard that represents the model, a label, a model attribute with a reference to the

glTF file, and a path that includes the time-stamped coordinates. JavaScript code use the

identifier for entity tracking.

JavaScript Code
The following JavaScript code snippet instantiates a viewer object, loads the CZML files into

data sources, defines a function for a camera look-at transform based on the International

Celestial Reference Frame (ICRF).

<script>

 var viewer = new Cesium.Viewer('cesiumContainer', {

 infoBox : false,

 selectionIndicator : false

 });

 var scene = viewer.scene;

 var clock = viewer.clock;

 var czmlDataSource1 = new Cesium.CzmlDataSource();

 czmlDataSource1.load('LunarProbeTrajectory_withBillboard.czml');

 viewer.dataSources.add(czmlDataSource1);

 var czmlDataSource2 = new Cesium.CzmlDataSource();

 czmlDataSource2.load('LunarOrbit_withTexture.czml');

 viewer.dataSources.add(czmlDataSource2);

 var camera = viewer.scene.camera;

 function icrf(scene, time) {

 if (scene.mode !== Cesium.SceneMode.SCENE3D) { // may not be necessary

 return;

 }

 var icrfToFixed = Cesium.Transforms.computeIcrfToFixedMatrix(time);

 if (Cesium.defined(icrfToFixed)) {

 var offset = Cesium.Cartesian3.clone(camera.position);

 var transform = Cesium.Matrix4.fromRotationTranslation(icrfToFixed);

 camera.lookAtTransform(transform, offset);

 }

};

 clock.multiplier = 2100 ; // speed of the simulation

 scene.preRender.addEventListener(icrf); // enable Earth rotation

 var icrfSwitch = true ; // flag for icrf event listener

//…

</script>

An event listener, added to the scene preRender event calls the ICRF function to put the camera

in the ICRF. A global Boolean variable, named icrfSwitch indicates whether the camera is in the

ICRF or world coordinates reference frame. While in the ICRF, the Earth appears to rotate.

Buttons enable selection of a viewpoint. Clicking a button calls the function associated with the

button. This code snippet displays the button for the spacecraft viewpoint and calls the

showSpacecraft function in response to a click event.

<input type="button" id="showShip" value="Spacecraft"

onclick="showSpaceCraft();" />

When the camera is in the ICRF, the camera’s trackedEntity function does not display the

intended target because the entity’s coordinates are based on the Inertial reference frame as

specified, in the CZML file, by the position reference frame attribute. The following code

snippet is the showSpaceCraft function. The view point functions use the icrfSwitch to determine

whether to remove or add an event listener to the scene.preRender event that calls the ICRF

function. When viewing the spacecraft or the Moon, the icrfSwitch is true so the event listener is

removed and the icrfSwitch is set to false. Functions called by the Earth or Big Picture buttons

add the event listener and set the icrfSwitch to true.

function showSpaceCraft() {

 viewer.trackedEntity = undefined

 if (icrfSwitch) {

 scene.preRender.removeEventListener(icrf);

 icrfSwitch = false ;

 } ;

 var spaceCraft = czmlDataSource1.entities.getById('lunarProbe') ;

 viewer.trackedEntity = spaceCraft ;

}

Notice that spaceCraft variable is set the lunarProbe object via the getById function associated

with the CZML data source entities collection. When the camera is in the Inertial frame, the

viewer’s trackedEntity function can follow the specified object.

Demonstration Source Code
A link to the demonstration was provided in the section “Visualization with Cesium” and

Figure_2 presented a screenshot. This link leads to the GitHub repository that contains the source

code, including the web-page with the embedded JavaScript and the two CZML files.

https://github.com/daoneil/spacemission

Conclusions
Topics covered in this tutorial included:

 Where to find tutorials for the General Mission Analysis Tool (GMAT)

 Where to find programming guides for the Cesium Modeling Language (CZML)

 The ISO 8601 Date and Time format used in CZML files

 How to convert GMAT generated trajectory data to CZML path coordinates

 Where to find NASA 3D Resources, i.e., http://nasa3d.arc.nasa.gov/

 Where to find information about the Khronos Group’s glTF format

 How to convert a COLLADA file to glTF via a web-app with a drag-n-drop interface

 A walk-through of a CZML file that identifies a glTF model and its path coordinates

 A walk-through of the JavaScript code that loads CZML files

 How to rotate the Earth via the ICRF transform for the camera

 A walk-through of JavaScript code that toggles the ICRF to enable camera entity tracking

 Where to find the source code for the demonstration described in this tutorial

A digital globe, such as Cesium, provides a capability to visualize ground based operations,

ascent and descent phases of a mission, and missions within the vicinity of the Earth.

Implemented, in JavaScript means that globe works within modern web-browsers without the

need for an add-on or additional software. Analytical Graphics Inc.’s decision to develop Cesium

as free open source code means the user community can contribute to the project. The Cesium

API and CZML offer a standardized approach to developing web-based space mission

simulators.

https://github.com/daoneil/spacemission
http://nasa3d.arc.nasa.gov/

